Catégories
nouveau blog
The molecular structure of PPS consists of benzene ring and sulfur atoms interarranged, the configuration is orderly, easy to form a high thermal stability of the crystal structure. At the same time, the molecular structure of PPS material has a highly stable chemical bond characteristics, the benzene ring structure makes PPS more rigid, and the sulfur ether bond (-S-) provides a certain degree of flexibility.
PPS itself has good heat resistance, flame retardant, chemical resistance, should be a promising material, but there are some problems in pure PPS:
Unmodified PPS has some unavoidable defects:
Difficult processing: this is the biggest pain point of all high temperature resistant materials -- high processing temperature, no matter the molding process or processing energy consumption, will face great challenges. In addition, PPS is still prone to thermal oxidation crosslinking in the melting process, resulting in reduced fluidity and further improve the processing difficulty;
Poor toughness: PPS molecular chain is rigid, the maximum crystallinity is as high as 70%, the elongation is low and the welding strength is not so good. As a result, the impact resistance of unmodified PPS is poor, which limits the application scope.
High cost: PPS raw materials and general engineering plastics compared, the price is about 1-2 times higher, and some modified materials compared with low cost performance;
Coating difficult: chemical resistance, medium resistance is also a double-edged sword, PPS surface coating and coloring performance is not ideal. While this is not a major problem for now, it is a limiting factor.
Unmodified PPS is difficult to apply, so if it is to be modified, which direction should be changed?
In recent years, with the popularity of 5G and electric vehicles, the application of modified PPS is constantly expanding, such as battery bracket, cover plate, lithium battery diaphragm, 5G communication equipment, intelligent terminal and so on.
Strengthen and toughen
PPS currently mainly through fiber filling and alloy two ways to improve the mechanical properties.
In addition to the common glass fiber reinforcement, carbon fiber, aramid fiber and other fillers are also gradually popular modification system.
Low dielectric modification
In order to improve the dielectric properties of materials, the way of blending alloy is generally used at present. For example, PPS/LCP, according to the research, the alloy system can be at 1MHz, the optimal dielectric constant up to 2.5.
In addition to alloys, low dielectric filler is one of the possible methods. Fillers such as hollow glass beads and low dielectric glass fiber can also effectively reduce the dielectric constant of PPS composites.
According to research, extrusion molding can reduce the dielectric constant below 3, and the electrical performance is stable in 40-120℃. In addition, the strength and dielectric properties of the composites can be further improved by surface coupling treatment.
Thermal conductivity modification
In the application scenarios of new energy vehicle power batteries or 5G high frequency, good heat resistance of materials is not only required, but also certain requirements are put forward for heat conduction. However, the thermal conductivity of PPS itself is poor, generally lower than 0.5W/(m·K).
At present, the main use of metal and inorganic filler two ways. The metal filler can improve the thermal conductivity, but also reduce the insulation performance.
Inorganic fillers, including oxides, nitrides, carbon materials, etc. PPS/ magnesium oxide is the mainstream choice, which can increase the thermal conductivity of the material to 1.61W/(m·K);
The nitride is more complex in preparation and technology, but also has higher thermal conductivity. The thermal conductivity of 40% boron nitride composite can reach 4.15 W/(m·K).
Graphene, CNT and other carbon materials are also the choice for PPS thermal conductivity modification. A good balance can be achieved between the addition amount and thermal conductivity. For example, the thermal conductivity of the composite can reach 4.414W/(m·K) with the volume fraction of 29.3% graphene.
Composite membrane modification
Pour le marché des diaphragmes de batterie au lithium, le PPS est également appliqué.
Auparavant, le matériau de diaphragme couramment utilisé était la polyoléfine, mais l'infiltration d'électrolyte et la stabilité thermique des matériaux polyoléfiniques sont relativement médiocres, et il est facile de produire un retrait et une fusion à haute température.
La résistance chimique et la résistance à la chaleur du matériau PPS ont également un certain potentiel de modification. À l'heure actuelle, la méthode principale consiste à revêtir la surface du diaphragme PPS pour préparer le diaphragme composite.
Cette méthode a été progressivement appliquée de la recherche académique à l'industrie. Le tissu non tissé PPS est utilisé comme matériau de base et le PVS est utilisé comme matériau de revêtement. Après revêtement physique, séchage et traitement de pressage à chaud, un diaphragme composite de batterie au lithium non tissé PVS/PPS est préparé.
Par rapport aux membranes polyoléfines traditionnelles, le PVS/PPS peut garantir une meilleure mouillabilité, bien que l'épaisseur soit augmentée, et la capacité spécifique de décharge est supérieure à celle des membranes polyoléfines.
Des experts techniques 24h en ligne pour vous fournir un service.